Multi-Scale Context Attention Network for Stereo Matching

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cascaded multi-scale and multi-dimension convolutional neural network for stereo matching

Convolutional neural networks(CNN) have been shown to perform better than the conventional stereo algorithms for stereo estimation. Numerous efforts focus on the pixel-wise matching cost computation, which is the important building block for many start-of-the-art algorithms. However, those architectures are limited to small and single scale receptive fields and use traditional methods for cost ...

متن کامل

EdgeStereo: A Context Integrated Residual Pyramid Network for Stereo Matching

Recently convolutional neural network (CNN) promotes the development of stereo matching greatly. Especially those end-to-end stereo methods achieve best performance. However less attention is paid on encoding context information, simplifying two-stage disparity learning pipeline and improving details in disparity maps. Differently we focus on these problems. Firstly, we propose an one-stage con...

متن کامل

Pyramid Stereo Matching Network

Recent work has shown that depth estimation from a stereo pair of images can be formulated as a supervised learning task to be resolved with convolutional neural networks (CNNs). However, current architectures rely on patch-based Siamese networks, lacking the means to exploit context information for finding correspondence in illposed regions. To tackle this problem, we propose PSMNet, a pyramid...

متن کامل

Efficient Large-Scale Stereo Matching

In this paper we propose a novel approach to binocular stereo for fast matching of high-resolution images. Our approach builds a prior on the disparities by forming a triangulation on a set of support points which can be robustly matched, reducing the matching ambiguities of the remaining points. This allows for efficient exploitation of the disparity search space, yielding accurate dense recon...

متن کامل

Fast Multi-labelling for Stereo Matching

We describe a new fast algorithm for multi-labelling problems. In general, a multi-labelling problem is NP-hard. Widely used algorithms like α-expansion can reach a suboptimal result in a time linear in the number of the labels. In this paper, we propose an algorithm which can obtain results of comparable quality polynomially faster. We use the Divide and Conquer paradigm to separate the comple...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2019

ISSN: 2169-3536

DOI: 10.1109/access.2019.2895271